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Abstract
Wave pmpagatwn thnmgh various media repwsents

a significant pmbkm in mang appkcdions in a-cous-
i?icaand ekctnnnagnetks especially when h medium
is dispersive. We pose a geneml dispersive wave prop-
agationmodel that could easilIInqnwsent miang classes of
dispersive waves and proceed to develop a mo&l-based
processor employing this underlyi

‘if
Strwcture. The

genend solution to the model-based isperstve wave es-
timation probkm is developed using the Bayesian max-
imum a-posterioti (MAP) approach which leads to the
nonlinear extended Kaiman jilter (EKF) processor.

1. Introduction

Dispersive wave propagation through various media
is a significant problem in many applications ranging
from radar target identification where electromagnetic
waves propagate through the atmosphere to discern the
nature of a reflected pulse classifying an intruder as
friend or foe, or in submarine detection and localization
where the propagation of acoustic waves through the
ever-changing dispersive ocean medium causes great
concern when trying to detect the presence of a hos-
tile target and track ita movements. Therefore, there
ia a need to develop generic characterizations of disper-
sive waves whkh do not depend on the details of the
physical system primarily because the required details
such as governing equations for the system and their
solutions may be imperfectly known. In this paper we
will show that a model-based signal processing scheme
applicable to any dispersive wave system can be devel-
oped from the basic properties of wave propagation in
a dispersive medium.

Our approach will be to develop a stat~space de-
scription of a dispersive wave measured by a sensor or
array of sensors. For simplicity we restrict ourselves to
one-dimensional waves, but the generalization to higher
dimensions ia straightforward. The wave pulse is ss-
sumed to be generated by an impulsive source at a
known position and a known time. We consider the
source pulse as a superposition of wave components of
many frequencies. Since the system ia dispersive, each
component propagatea at a different speed resulting in
a spreading or dispersing of the pulse over space and
time as it propagates. This spreading is described by
the dispersion relation of the system which relates the
frequency of each component to its wave number. We
will show that a complete state-space representation
of the wave can be formulated from the dispersion re

lation combined with an envelope or amplitude mod-
ulation function. The dispersion relation completely
describes the propagation properties of the dispersive
system, while the envelope is related to the tiltia.1 con-
ditions. Once specified, it is then possible to develop
a generic model-based processing scheme for disper-
sive waves. The primary motivation for this approach
follows the dispersive wave characterisation developed

J
in the text by Whithsm 1]. ThB processor evolves
directly from the modlfi plane wave, internal wave
techniques developed using an approximation of the
dispersion relation 2]. In contrast, the generic dis-

1persive approach re ies exclusively on the underlying
envelope and dispersion relation to develop an optimal
Bayesisn processor. It ia thk model-baaed approach
that we employ using a dynamic propagation model
incorporated into an optimal estimation scheme to pr~
tide the neccsary internal wave enhancement.

In section 1, we present the general dispersive wave
representation and outline the correspondh-ig model-
based processor MBP) using the Bayesian maximum

La posterion (MA ) approach for the underlying wave
estimation or equivalent signal enhancement problem.
Next, employing this general solution, we apply it to
the problem of internal wave estimation directly from
an empirical dispersion relation in section 2, while ap-
plying it to simulated data in section 3.

2. Model-Based Dispersive Proce~r

In this section we develop the underlying dispersive
wave model and cast it into state-space form. Once this
is accomplished, a Bayesian maximum a posteriori so-
lution ia outliied and the resulting processor is shown
to lead to the extended Kslman filter (EKF) solution
lJ3. .The complete model-based solution ia then speci-

ed m terms of the model and algorithm showing that
intuitively the d=peraion relation is the fundamental
quantity that must be known a-priori.

2.1 Dispersive Stat+A3pace Propagator

First, we develop the stat~space representation of a
genersi dispersive wave system obtained from a simple
physical characterization of a dispersive wave measured
by a sensor or array of sensors. In conatrsst to the usual
approach of clsssifyhg non-dispersive waves in terms
of their inherent differential equations (hyperbolic, el-. -.,.-.



liptic, etc.), we use a solution rather than propagation
equation for our dispersive prototype. Therefore, fol-
lowing Whitham 3], we define a generic dispersive wave

Las any system w “ch admits solutions of the general
form

l+, t) = +, t) Sin[@(z, t)] (1)

where u is the measured field and cr(z, t), 6(z, t) are
the respective envelope or amplitude modulation and
phsse functions. The phase ia assumed to be monotonic
in x and t, and the envelope is assumed to be slowly
varying compared to the phase. The phase function
describes the oscillatory character of a wave, while the
slowly varying envelope allows modulation of the wave
without destroying its wavdike character. The local
values of wave number and jiegwency can be deiined as

a M
K(Z, t) = ~, +, t) ~~.— . (2)

These functions are also assumed to be slowly varying
and describe the frequency modulation of a dispersive
wave train. By slowly varying we mean that we can
approximate the phase junction as

e(z, t) = I@, t)z – (4@, t)t. (3)

The combination of Eqs. 1 and 3 can be considered an
asymptotic solution to some dispersive wave system.
To complete the specilkation of a dispersive wave sys-
tem, we define the disperswn rvlatwq u = U(IC,x, t).
ThM is generally an algebraic function of K(Z, i!) but can
also depend on x and t separately to represent time
varying, nonuniform wave systems. Here we will write
w = w(~) where the z and t dependence through the
wave number function tc(~, t)and any system nonuni-
formity is implied. This and the envelope are the only
parta of the description which are unique to the par-
ticular type of wave system under investigation. The
choice of dispersion relation enables the differentiation
between acoustic ra&ation, electromagnetic radiation,
ocean surface waves, internal gravity waves, or sny
other wave type. Thus, the dispersion relation is equiv-
alent to the governing equations for a particular wave
system [1]. Our only restriction on it in th~ paper ia
that it is independent of the envelope, CY(Z,t). ThB
restricts our formulation to linear dispersive waves.

From Eqs. 2 and 3 it can be shown that the phase
fronts of any wave travel at the phase speed defined by

(4)

while the points of constant wave number ~ travel at
the group velocity defined by

(5)

These two speeds are not the saime in general and are
functions of wave number K. The group velocity has the
additional significance of being the energy propagation
speed for the wave system, that is, the energy in the
wave packet is carried at th~ velocity. As such it plays

a central role in the statespace formulation of a general
dispersive wave system.

Now consider the problem where an impulse occurs
at time t = O at the spatial origin, z = O. The impulse
can be represented by the superposition of wave com-
ponents with various wave numbers. A wave train is
generated by the impulse and propagates aways from
the origin. Each wave number component in the train
propagatea with group velocity given by Eq. 5. If a
sensor is placed at a distance z away from the origin,
then the toad wave number, K(Z, t),observed at time
t >0 ia related to z by the group velocity,

z = Cg (K(z, t))t. (6)

This relation ia simply a restatement of the definition
of the group velocity as the speed at whkh a given
wave number 6(z, t)propagates in the wave train. It is
the group velocity that plays the dominant role in dis-
persive wave propagation. Note also that the resulting
wave train does not have cohstant wavelength, since
the whole range of wave numbers is still Dreamt. that
is,A(z,t)= *.

The actual sensor measurement u(t) at z is given by
combining Eqs. 1 and 3, that is,

u(t) = CY(Z,t; K) sin[~(t)z – ti(~)t], (7)

where we have suppressed the dependence of ~ on x
and allowed the envelope to be a function of IC. We
will choose the wave number ~(t)at z as our state
variable and develop a dynamical equation for its tem-
poral evolution by differentiating Eq. 6 using the chain
rule

(8)

to obtain

[1o=d/c dc~(tt)
—’t + Cg(lc).

~ d~
(9)

Now solving for ~ and substituting the expression for
group velocity in terms of our original dispersion rela-
tion, we obtain

$=-H*I[=1-1’“0> “0)
which shows how the wave number evolves dynamically
(wmporsJly) as a function of the underlying disper-
sion..relation w(~). If we couple this expression back to
the original dispersive wave solution, then we can have
a general continuous-time, spatio-temporal, d~persive
wave, stat-space representation with state defined by

J
IG(t.

uppose we sample th~ wave with an array of L
sensors oriented in the direction of propagation, that
is, x+xt,l= l,... , L, giving L wave numbers and
L initial conditions. If the entire state-space is to be
initialized at the same time, care must be taken to
select the initialization time to be after the leading
edge of the wave has passed through the entire ar-
ray. Let to be the time the leading edge passes the

. ... ...



sensor L, the sen.mr farthest, from the origin, then
xL = Cg(EL(G)) %, where KL(to) is the wave number
for the maximum group velocity. The initial conditions
for the other sensors in the array are obtained by solv-
ing Ze = c (nt(tO)) tO for each 4. Thus, the “spatially”
yled, &spersive wave, stat~space model is given

&&
=-+ [*] [*]-’, t,%;

ZQ(t) = a (t; Icl) sin[fc@t– (4&)t], (11)

IQ(to), 1=1,..., L.

We can further diacretize th~ model temporally by
sampliig t + t&,and also by replaciig the deriva-
tives with their first difference approximations. Since
we know that the dispersive medium in which the
wave propagatea is uncertain, we can also character-
ize uncertainties with statistkal models, one of which

al
is the well-known Gauss-Markw model 13. Perform-
ing these operations we achieve our desir result, the
discrete, spati&emporal, dispersive wave state-space
Gauss-Markov model:

-1

/C~(t&+l)= Kt(tk)– $ [*I [9
1

+Awt(tk);

tL&) = CY.(t&;K.I )Shl [@k)Z~ – fd(/Cc)t&]+ t@k),

K&J ; t?=l,..., L,

where Wt(tk) and u~(t~) are assumed zero mean,
gauasian noise sources with respective Covarian-,
&Jt~), &w(t&). The mer~ v~tor Gau-M~kov
form can be found in Refr. 3 and is simply given by

K(tk+l) = a [~, t~] + Aw(tk),
(12)

U(tk) = C [K, tk] + V(tk),

Jwhere a.], CIO]are the respective nonlinear vector sys-
tem an measurement functions with the correspond-
ing state and measurement mvariancea defined by

. . p~tk+l) and &(tk), with the system and measure-
ment jacobians, A [~] s $# and C [K] - ~. The Sub-
sequent development of our processor will rely on this
statistical formulation for both simulation and estima-.
tion.

2.2 Dispersive Model-Based Processor

Next we outline the model-based processor (MBP)
baaed on the vector representation of the wave numbers
and wave-field, that is, we define the vectors, U(tk) -

[U,(tk), ,U~(tk)]Tand /C - [~l(tk), . . . . ~~(tk)]~.
Once the wave is character.ked by the underlying
Gauss-Markov representation, then diqwrsiue waue es-
timation problem can be specified by

GIVEN the approximate Gauss-Markov model (above)
characterized by the dispersive wave stat+space model

and a set of noisy measurements, {U(tk ) }, FIND the
best (minimum error variance) estimate of the wave,
that is, find fi(tk).

The minimum variance solution to this problem can
be obtained by the maximizing a posterior density,
leading to the so-called MAP equatio~

&hd%(6(tk+l)luk+l)=o. (13)
U=itMA p

Diierentiating the posterior density and noting that
k(tk+ll~) and ‘f(tk) are both functions of the data set,
Uk, We obtain that &Ap(tk+l) = ii(tk+llk+l) SS (See

Refr. 3, pp. 80-81 for more details)

~(tk+llk+l) = ~(tk+llk) + K(tk+l)~(tk+l), (14)

where this expression is the corrected estimate (below)
and shown in the algorithm of Table 6.63 of [3]. Thus,
the model-baaed solution to this wave enhancement
problem can be ~leved using the nonlinear extended
Kalman filter (EKF) algorithm which is given (simply)
as:
Prediction:

Innouatim
.,

t(tk) = U(tk)- ii(tk+llk)

ii~(t~+lpJ= 12(tk;k.t(t~+llk))sin [ke(tk+llk)~g– U(k[)tkj

/!=l,..., L;

Correction

k(tk+llk+l)= it(tk+llk)+ K(t&(tk) (16)

Gain

K(tk) = p(tk+~,k)cT(tk)R:l(t~) (17)

Here the predicted and corrected covariances are
given in Table 6.63. Fkom the Table we see that in
order to construct the optimal dispersive wave model-
based processor, we must not only specify the required
initial conditions, but alaa the respective system and
measurement jscobians: ~ and ~. For our gen-
eral solution, we see that

C [K/+, tk] = ~(tk;K4)SiIl[6/(t~)Q– ti(Ke)tk] , t = 1 . . . . . L.. .. ...



The jacobians then follow easily as

A [/$f(t~), tk] = 1-$(1 -*),4 =1>...,L;

c [Kt(tk), tk] = *sin [Kt(tk)22 – ti(fi)tk]

Thii completes the section on dispersive wave estinw
tion, next we consider the application of this processor
for internal waves.

3. Internal Wave Processor

When operating in a stratified environment with rel-
atively sharp density

r
adients any excitation that dis-

turbs the pycnocline density profile) will generate in-
tenud waves [4].

To apply our processor to the internal wave enhan-
ment problem, we first recall the original dispersive
wave system of Eqns. 1 and 3 and apply this struc-
ture to the internal wave dynamics where u represents
the measured velocity field and cr(z, t)and 6(z, t) are
the respective envelope and phase to be specified by the
internal wave structure. We define the internal wave
dispersion relatwn by

w = (JO(K)+ fc(z, t)v. (18)

where we have included the additive veloci~ term to
account for the effects of a doppler shift created by the
ambient current. That is, in the original formulation
we have replaced the position variable by z ~ z — vt
which leads to the above equation. For uJ~), we use a
d~persion model based on some empirical results, the
Barber approximation (5], for internal wave dispersion
and group velocity. Thus, we have

coK(t)
U*(K) =

1 + $@(t)
(19)

with CO ia the initial phase velocity and NOis the max-
imum of the Brunt-V&is&la frequency profile. It ia also
possible to derive the following approximation to the
amplitude modulation function as

dtd = ~ [CJIC)]3’2sin[4K,tdTtd (20)

where A ia a constant amplitude governing the over-
all envelope gain, TW ia a temporal window width and
cJ~) is the phase speed defined below.

We use the simulator [6] to synthesize internal wave
dynamics corresponding to an internal wave field ex-
periment performed in Loch Lknhe, Scotland “m 1994
[7,8]. The simulation (shown in Figures la) was per-
formed baaed on the SNR defined by: SNR := u2/%~,
where u is the energy in the true image (sealed to
unit variance) and &V is the measurement noise vari-
ance extracted from experimental data. The spatio-
temporal velocity field includes the entire range of 361

temporal samples at At = 5sec representing a propa-
gation time of approximately 1/2 hour and spatially we
assume a line array of 30 sensors (enough to illustrate
the wave structure) spaced at Ax = 4rn representing
w aperture of 120 meters. For this internal wave sim-... .. ..
ulation, we choose a peak Brunt-V-ala frequency of
NO = 0.137r/sec and a long wave (~= O) phase speed
of CO = 0.34rn/s with the ambient current (doppler
shift) of v = –0.lcm/sec. The data was contaminated
with additive gaussian noise at a - 23dB SNR. Here
we observe the effect of additive gaussian noise in ob-
scuring (visually) the internal wave dynamics of the
synthesized velocity field. We see the noisy internal
wave spatio-temporal signals synthesized, while the en-
hanced wave estimates are shown in lb. The results ap-
pear quite good, however, they must be analyzed from
the statistical perspective to actually assess the overall
performance of the processor. With this information
in hand, we specify the required dispersive wave stak
space model as:

f@&+l) = lcl(t~) + *+ a!%’ ‘k‘to;

Thus, the MAP estimator can now be constructed us-
ing the formulation of the previous section and substi-
tuting the internal wave model and above noted jaco-
biana.

We used SSPACKYC; a model-based signal pro-
cessing toolbox available in MATLAB to design the
processor [9,10]. The model-based wave enhancer ia
able to extract the internal wave signatures quite ef-
fectively even though the embedded dispersive wave
model is just an approximation to the actual wave
dynamics. We show the spati-temporid interpreta-
tion (and display) of the noisy and enhanced signals in
Figure 1. To confirm the processor performance that
we observed visually, we perform individual whiteness
tests on each of the temporal sensor outputs. We use
the corresponding sensor innovation indicating the dif-
ference between the noisy and predcted measurement
along with the bounds predicted by the processor. Here
95% of the innovationa should lie within the bounda in-
dicating a reasonable processor. Performing these tests
on all of the sensor innovation outputs reveala that each
irdkidually satisfied these atatistkal tests indicating a
zero mean/white innovations and a near optimal pro-
cessa. Thus, these simulations show that the Gauss-
Markov formulation enables us to capture various un-
certainties of internal waves as well as its associated
statistics in a completely consistent framework.

To further assess the feasibility of th~ approach,
we ran the enhancer on other synthetic data sets at
OdB,– 10dB, and –13dB with similar results, that
is, the model-based approach enabled a near-optimal
Bayeaian solution with all sensor innovation sequences
statistically testing as zero-mean/white. We are cur-
rently applying this technique to carefully controlled
experimental measurements and the preliminary re-
sults have led us to continue to puVue this approach.



‘w

25

10

Is

10

s

1

Time (SCC)

F@we 1: Equivalent Model-Based Internal Wave
Spati*Temporal Enhancement (a) Synthesized wave
(-23 dB SNR). (b) Enhanced interred wave.

4. Summary

In this paper we have developed a generic disper-
sive wave processor. Starting with a general solution
to the propagation of waves in a dispersive medium,
we developed the approximate (due to nonlinear sys-
tems) maximum a-posterior (MAP) solution using a
Bayesian formulation of the wave field enhancement
problem. The results are significant in that all that ia
required ia the envelope or equivalently amplitude mod-
ulation function and diapersion relation to completely
specify the underlying wave system. It is in fact the
particular dwperaion relation that enables the dMeren-
tiation between acoustic and electromagnetic rsdation,
ocean surface wavea and internal gravity waves or seis-
mic waves or any wave system for that matter. The
generahty of this result enables the specification of a
particular wave system by ita underlying envelope and
dispersion and then applying the algorithm to obtain
the MAP solution.
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